AICE Math P1 & P2 1.1 Graded Assignment SUMMER WORK			
Name:	Period:	Date:	
EXAM STYLE QUESTION:			
1. Find the set of values of k for which the line $y = 2x - k$ distinct points.	meets the cu	rve $y = x^2 + kx$	z - 2 at two [5]
			Marking points available
		Thinking the	AICE Way:
		How do you l graphs meet equal to each	(hint: they are
		If you have a	quadratic equa-
		mine if the e	an you use to deter- quations have 0, 1, s (hint: the discrimi-
		-	solve a quadratic in- t: you need to test ph)?

The point <i>C</i> lies on the perpendicular bisector of the line joining the points $A(4, 6)$ and $B(10, 2)$. <i>C</i> also lies on the line parallel to <i>AB</i> through (3, 11).				
(i) Find the equation of the perpendicular bisector of AB .	[4]			
(ii) Calculate the coordinates of <i>C</i> .	▼[3]			
	Marking points available			
	Thinking the AICE Way:			
	Graph the situation to visualize what you are looking for.			
	Remember the Midpoint for- mula, slope formula and point			
	slope form of a linear equations.			
	What do you know about a per- pendicular bisector?			
	What do you know about paral- lel lines?			

2.

remainder is 7.	d by $(x^2 - 4)$, and confirm that the [3]
(ii) Hence solve the equation $6x^4 - x^3 - 26x^2 + 4x + 8 = 0$.	[3]
	Marking points
	available
	Thinking the AICE Way:
	Do you use long division, or can
	you use synthetic? What is the remainder if you di-
	you use synthetic?What is the remainder if you divide with a factor?
	you use synthetic? What is the remainder if you di-

4. $y = \frac{B(15, 22)}{C + C + C + C}$	
The diagram shows a triangle <i>ABC</i> in which <i>A</i> is $(3, -2)$ and <i>B</i> is $(15, 22)$. T and <i>BC</i> are $2m$, $-2m$ and <i>m</i> respectively, where <i>m</i> is a positive constant.	The gradients of AB, AC
(i) Find the gradient of <i>AB</i> and deduce the value of <i>m</i> .	[2]
(ii) Find the coordinates of <i>C</i> .	[4]
The perpendicular bisector of AB meets BC at D.	
(iii) Find the coordinates of <i>D</i> .	[4]
	Marking points available
	You're on your own!